Spectral measures for derivative powers via matrix-valued Clark theory
نویسندگان
چکیده
The theory of finite-rank perturbations allows for the determination spectral information broad classes operators using tools analytic function theory. In this work, are applied to powers derivative operator, providing a full account from self-adjoint boundary conditions computing aspects operators' matrix-valued measures. particular, support and weights Clark (spectral) measures computed via connection between contractive functions nonnegative through Herglotz Representation Theorem. For associated with several derivative, explicit formulae these included. While eigenfunctions eigenvalues fixed can often be direct methods ordinary differential equations, approach provides more complete picture information.
منابع مشابه
Operator-valued spectral measures and large deviations
Let H be a Hilbert space, U an unitary operator on H and K a cyclic subspace for U . The spectral measure of the pair (U,K) is an operator-valued measure μK on the unit circle T such that ∫ T zdμK(z) = ( PKU k ) ↾K , ∀ k ≥ 0 where PK and ↾ K are the projection and restriction on K, respectively. When K is one dimensional, μ is a scalar probability measure. In this case, if U is picked at random...
متن کاملSpectral Factorization of Non-Rational Matrix-Valued Spectral Densities
Recently, a necessary and sufficient uniform log-integrability condition has been established for the canonical spectral factorization mapping to be sequentially continuous. Under this condition, if a sequence of spectral densities converge to a limiting spectral density then the canonical spectral factors of the sequence converges to the canonical spectral factor of the limiting density. Howev...
متن کاملSpectral estimates for matrix-valued periodic Dirac operators
We consider the first order periodic systems perturbed by a 2N × 2N matrix-valued periodic potential on the real line. The spectrum of this operator is absolutely continuous and consists of intervals separated by gaps. We define the Lyapunov function, which is analytic on an associated N-sheeted Riemann surface. On each sheet the Lyapunov function has the standard properties of the Lyapunov fun...
متن کاملInverse spectral analysis for finite matrix-valued Jacobi operators
Consider the Jacobi operators J given by (J y)n = anyn+1+bnyn+a∗n−1yn−1, yn ∈ C (here y0 = yp+1 = 0), where bn = b ∗ n and an : det an 6= 0 are the sequences of m × m matrices, n = 1, .., p. We study two cases: (i) an = a∗n > 0; (ii) an is a lower triangular matrix with real positive entries on the diagonal (the matrix J is (2m+1)-band mp×mp matrix with positive entries on the first and the las...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2022
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2022.126275